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Abstract 

The kinematics of elastic and inelastic tachyon-bradyon and tachyon-tachyon scattering 
2 -~ 2 is examined. To get kinematic limits finite, the initial and final momenta of a 
tachyon are subjected to the restriction pp' < 0. This is sufficient in tachyon-bradyon 
scattering; in tachyon-tachyon scattering additional covariant restrictions exist, though 
these follow from the problem. In an alternative approach, where there is interaction the 
particle energies must be positive relative to the rest frame of the total momentum, which 
additional condition is shown to lead to a simplification of the kinematic results. 

1. Introduction 

It has been postulated that faster-than-light particles ( tachyons)  from con- 
ventional subluminal sources move in Minkowski space for all these sources 
(Lemke, 1975), According to this the kinematics for the scattering 2 -~ 2 o f  
such tachyons from ordinary particles or other such tachyons must be Lorentz 
covariant. It has also been argued that  the norm sign o f  any particle momentum 
does not change in an elastic collision (Lemke, 1977). We will therefore 
examine the two cases in which the particles do not  change the 4-vector type.  

In both  reactions the initial total  momentum can also be spacefike and light- 
like. It is well known (Byckling and Kajantie, 1973) that the phase space for 
the final states is then infinite, which is unphysical.  Therefore, in addi t ion to 
4-momentum conservation, covariant constraints must exist to bound  the 
phase space. Clearly, such constraints can easily be postulated,  but  this is not  
our aim; they must be as few as possible and have a natural basis. 

Recently,  in treating electromagnetic t achyon-bradyon  scattering, the 
restriction pp'  < 0 was found to be the only natural restriction for the 
scalar product  o f  the initial and final tachyon momentum and sufficient 
to limit the final momenta  (Lemke, 1976). In Section 2 the kinematic limits 
will be given in the Mandelstam plane s-t-u.  

This restriction could also be applied successfully in the quantum electro- 
dynamics o f  superluminat currents (Lemke, 1976), and Section 3 will show 
that it is also useful in tachyon- tachyon scattering. In this reaction additional 
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restrictions are necessary. But these will follow from the working hypothesis 
"that which is unphysical cannot be realized by nature." According to this 
philosophy negative-mass bradyons, for example, cannot be detected by future- 
oriented observers because there are apparently no means for limiting the 
phase space of  the final states at s = (Pl +P2) 2 < 0 + 0. Without making 
further assumptions, we shall find that two tachyons can only interact if s 
is positive; at s = 0 the physical phase space is the limiting case o f s  -+ 0 + 0. 

In Subsection 3.4 we postulate that the signs of  the particle energies are 
equal relative to the rest frame of  the total momentum (the signs are positive 
by definition of  the rest frame) and describe the consequences. This postulate 
can be regarded as related to a generalized concept of  causality that also allows 
for a causal tachyon behavior (Lemke, 1977). That topic is beyond the scope 
of  this paper; let me only mention that the postulate leads to the satisfactory 
result that proton and electron are stable under tachyonic decays. 

For inelastic tachyon-tachyon scattering we shall find two selection rules, 
which, however, will not exist if the alternative approach in Subsection 3.4 
applies. 

There will be no upper limit for the final particle masses in inelastic 
scattering, whereas in bradyon-bradyon scattering the bound (m' 1 + rn;) 2 ~< s 
exists. This result is not unphysical because dynamical laws could rule out 
the excitation of  in-coming particles to infinite rest masses. Nevertheless, we 
will show that the results in Subsection 3.4 afford such upper limits for 
tachyon-bradyon scattering and that these results can be used to find the upper 
limits for tachyon-tachyon scattering. 

2. Tachyon I + Bradyon2 -+ Tachyon'l + Bradyon'z 

2.1. Elastic Scattering. In relation to the initial bradyon's rest system the 
variable s can be written as 

s = (Pl +P2) 2 = M2 - m2 + 2Mea (2.1) 

where M is the bradyon mass and m is the tachyon mass. Because of  Lorentz 
covariance the tachyon energy ea cannot be subjected to bounds, and s can 
vary between -+ infinity. So there is no center-of-mass system (c.m.s.) among 
the Lorentz frames for some values of  el, and the rest system of  the initial 
bradyon proves to be the only natural Lorentz frame. In the following all 
momentum variables will refer to this system. 

The squared invariant momentum transfer reads 

t = - = - z a 4 ( e ;  - M )  ( 2 . 2 )  

It is always negative since e; >~ M. Squaring the conservation law P'I = Pl + 
P2 - P2 one finds p,p;  = e'2(M + el) - M(M + el), and from squaring once more, 
the dependence of  the final bradyon energy e 2 on el and cos 02 follows: 

+M) 2 -+ (el 2 + m 2) cos 2 02 (2.3) 

e'2=M(e 1 +M)Z_(e12 +rn2)cos  2 0 2 
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Because the lower sig~ ~ves e~ = M (no interaction), the upper sign is valid. 
Energy e~ increases with cos 2 02 and reaches its maximum at cos / 02 = 1 if 
ea 2 + m 2 < (e 1 +1!4) 2, which condition equates w~ths > 0 [see (2.1)]. If 
s < 0, there is an upper boundary of  cos 2 02, where e~ tends to infinity. Hence 
variable t has a lower limit only where s > 0. By substituting e~ m a x  into (2.2) 
one finds 

t - (S)  = --S -1 [S 2 + 2s(m 2 -- M 2) + (m 2 +M2) 2] (2.4) 

Tiris is a hyperbolic branch that reaches to - i n f  at the limits s -+ 0 and 
s -+ inf, the maximum being located at sl, 2 = +-( m2 + M / )  - At s 1 the value of  
(2.4) reads 

t-(s1) = - 4 m  2 (2.5) 

For the sum of  the Mandelstam variables we have s + t + u = 2(M 2 - m2), 
which is positive or negative for M >  m or M < m, respectively. Substituting 
the kinematic limit (2.4) one gets this limit in the form us = (rn 2 + M2) 2, which, 
as also the above relations, is the same as in bradyon-bradyon scattering after 
changing the sign of  m 2. 

The lower limit for t at negative s is provided by the restriction PlP'I  < O, 

which leads to 

t > - 2 m  2 (2.6) 

This also is seen to cut off  the singularity of  (2.4) at vanishing s. Because of  
(2.5) kinematic limit (2.6) lies above the bound (2.4) that has followed from 
only the conservation of  4-momentum and the physical condition e; ~> M. 

The results are summarized in the Mandelstam plane in Figure 1. The 
essential difference between the depicted kinematic region and that in bradyon-  
bradyon scattering is its independence of  s. Therefore, as (2.2) shows, the 
phase space of  the final bradyon energy is also s independent; it is given by 

t + m 2 / M  2 > 4 / M >  1 

according to wiaich e '2 /M can vary the more the greater the tachyon mass in 
units of  the bradyon mass. Moreover, the kinematic regions of  the s and u 
channels are the same. Experience shows that a t channel does not exist. 
Besides, one sees from Figure t that restriction (2.6) would not be necessary 
for bounding the phase space if one was able to require that s ~> M 2 + m 2. 

2.2. I n e l a s t i c  Sca t t e r ing .  Instead of  (2.2)we now have t = M 2 + M 'z - 

2Me;, which is smaller than (M' - 3/0 / because e; ~> M'. To find the upper 
and lower limits t -+ (s), we consider them in the c.m.s. There 

! 

t = M 2 + M '2 - 2(e2e 2 - p/p~) (2.7) 

e2 = ~s- 1/2(s + m 2 +M2),  el = i s -  1 / 2 ( s  - m 2 - M 2 )  (2.8) 
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Figure 1. Physical regions in elastic tachyon-bradyon scattering, where rn is the tachyon 
mass. 

Expression (2.7) has its maximum and minimum for parallel and antiparallel 
l 

P2 and P2, since these momenta  have fixed magnitudes. Hence, 

t +- = M z + M  '2 - ½s -1 {(s + m 2 +M2)(s  + m '2 + M  '2) 

-T- [(s + m 2 + M2) 2 - 4M2sl 1/2 [(s + m '2 + M'2) 2 - 4M'Zs] 1/2} (2.9) 

One can convince oneself that  t -  equals (2.4) and t ÷ = 0 for elastic scattering. 
The upper bound t+(s) is found to tend to  zero for s -~ -+inf, i.e., the change 

of  rest mass does not  play any part in this limit. At s = 0 one finds the finite 
value 

t + ( s = O ) = ( M , Z m Z _ M 2 m , 2 ) ( t  1 ) 
rn 2 + M  2 rn,2 +M,2 (2.10) 

So t ÷ varies within certain finite boundaries.  It is defined at every s because 
the roots in (2.9) are seen to remain real. 

Let us examine the case o f  equal masses, m = M and m'  = M' ,  more closely. 
The Taylor series of  t + about s --1 = 0 begins with t+(s -+ +in0  = (m '2 - rn2)2/s, 
which shows that t + approaches zero from above for s ~ +inf and i t  approaches 
zero from below for s -+ - i n f .  The expansion about s = 0 is of  the form 

_1 (m '2  m2 2)  

Because the parameter is posit ive-definite,  t + increases with s in the vicinity 



t = (m' + m) ~ 

t = 0  

t = - ( m ' - -  m) = 

t = - - m  s -- m ' 2  
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F i g u r e  2.  I n e l a s t i c  t a c h y o n - b r a d y o n  s c a t t e r i n g  w h e r e  M = m a n d  M '  = m' .  

of s = 0. Hence at least one minimum and one maximum exist. Differentiating 
with respect to s one finds their positions at sl, 2 = + 2ram'. So there are one 
minimum and one maximum, whose values can be shown to be t+l = ( m ' -  rn) z 
and t~ = - ( m '  - m) 2. (See Figure 2.) 

The lower bound t -(s)  again jumps across +-inf at s = 0. In our special case 
of  equal initial and equal final masses the local maximum and minimum of  t -  
are found at sl, 2 = +-2rnm', at which positions t -  takes on the values ty = 
- ( m '  + rn) 2 and t~ = (m'  + m) 2. This shows that t - l i e s  again below the kine- 
matic limit t > - r n  2 - rn '2 that follows from PtP'I < O. 

3. Zflchyofl  1 + Zachyof l  2 --~ Zachyofll l  -I- Tachyon'2 

3.1. As in t achyon-bradyon  scattering the total  momentum is timelike 
(s > 0), lightlike (s = 0), or spacelike (s < 0). Only if it is t imelike, there is 
one Lorentz frame for which the initial (and final) three-momenta are anti- 
parallel and o f  equal magnitude. I f  the initial three-momenta are only anti- 
parallel, then s is not  necessarily positive, whereas when they are parallel, s is 
negative. 

Let us give an elementary proof  that there is not  necessarily a Lorentz frame 
for which the initial three-momenta are colinear. Assumhag such a Lorentz 
frame exists, the frames moving parallel to the direction of  the momenta  
would also be such frames, among them the standard system of  one of  the 
momenta,  say Pl [Plstan. = (0, m, 0, 0)] ,  which system is determined up to 
rotat ions and Lorentz boosts in the plane perpendicular to Pl [the elements 
of  O(1 ,2 ) ] .  Therefore, if such a Lorentz frame existed, there would also have 
to be one frame among the Pl standard systems for which Pl and P2 are co- 



312 LEMKE 

linear. This, however, is not necessarily the case. To see this, we denote the 
projection of  p~ on the plane perpendicular to Pl by P2t- The Lorentz boost 
along directions in this plane can map this projection onto zero only if 
I P2t I/e2 < 1, which is not necessarily satisfied. In particular, this is not 
satisfied if P2 is perpendicular to Pl in the Pl standard system. 

3.2.  Elast ic  Scattering.  The sum of  the Mandelstam variables takes on the 
value s + t + u = -2 rn l  2 - 2rn2 2, which is always negative. 

Let us begin with negative s. In the standard frame of  the total momentum 
the law of  four-momentum conservation reads 

0 = E 1 + E 2 = E' 1 + E;  ( 3 . 1 )  
t t 

+-( - s )  1/z =Ptx  + Pzx = P lx  + P2x 

where the three-vectors in the (0, 2, 3)-hyperspace have been designated by 
E, E 2 = px 2 - m 2. By squaring +-(-s) 1/2 - P tx  = P ~  one finds Plx,. • . ,E l , . . .  
as functions o f s  

Plx = Plx = -+½(--s)- 1/2(m12 -- rn2 2 - s), 
(3.2) 

P2x = P'ax = +½(-s ) -a /2 (m2  2 - m l  2 - s)  

Equations (3.1)-(3.2) show that E12 = E2 z = E'I 2 = E ;  2. According to (3.2) 
[Pix [ > mi  for 0 > s > - (m 1 - m2) 2 and s < - ( m  1 + m2)2; between these 
intervals [ Pix [ < mi is valid. Correspondingly, Ei 2 > 0 in the first case and 
E~ .2 < 0 in the second. 

At first we will deal with the second case and consider 

t = - 2 ( m l  2 + EIE'  1 - P l x P ~ )  (3.3) 

Because of  E12 =E'I 2 < 0 the vectors E 1 and E' 1 tie in the (0, 2, 3)-hyperspace 
on the same spacelike hyperboloid, which is single sheeted. Because the product 
EaE' 1 is invariant under the elements o f  O(1, 2), there is a frame S + for which 
Ea = (0, p~y, 0) and 

E 1 E ,  1 - f ~ Z~11/2- '+  --"-~.--'~1 ) P l y  
t+  

Ply  can take on every value between -+inf, because of  which t is unbounded. 
t +  

Moreover, the planes Ply = const intersect the spacelike hyperboloid on a 
pair o f  parabolas on which e] + and p'a + vary without limit. Hence the phase 
space of  the secondaries is infinite even for given s and t. In other words, no 
restriction on the invariants PIP'2 or PlP'I c~in serve for bounding the magnitudes 
of  the final momenta. We conclude that there is no interaction if - ( m  1 - m2) 2 > 
s > - ( m  1 + m2) 2. 

We turn to the region 0 > s > - ( m l  - rn2) 2, --(ml + mz) 2 > s. Here 
E2 2 = E;  2 is positive, so E 2 and E; lie in the (0, 2, 3)-hyperspace on the same 
timelike hyperboloid, which is two sheeted. As E; can equal E 2 (then t = 0, no 
interaction) both vectors lie on the same sheet. By this E2E; > Ez 2, so (3.3) is 
negative-definite. The restrictions PiP[ < 0 provide the lower boundary 

t > - 2  min (ml  z, m2 z) (3.4) 



KINEMATICS FOR THE SCATTERING OF SPACELIKE MOMENTUM 313  

Thus, we have arrived at a finite physical t-region. But as shown above, this is 
not sufficient for having a finite phase space. Indeed, in the rest frame S + of  

E2 E2E~ = E2e'2 + 

and in the Flmit s -~ - ( m  1 + m2)  2 - 0 or s ~ - ( m  I - m2) 2 + 0, in which E 2 
vanishes, e; + has to tend towards infinity to decrease (3 .3)  to the lower bound- 
ary (3.4). That is, in this limit the boundaries for the magnitudes of  the final 
momenta diverge to infinity. 

As there are no means to exclude s = - ( rn  1 -+/772) 2 from the physical region, 
interaction cannot happen i fs  is negative. In other words, if in the standard 
frame o f  pl or P2 the initial three-momenta obey PiP2 > -½(ml  2 + m22), 
interaction will be impossible. Analogously, bradyons traveling backward in 
time (negative mass) would not interact with those traveling forward in time 
(positive mass) (Section 1). Such a necessary absence of  interaction (which is 
a phenomenon unknown in bradyon physics) already follows from general 
considerations of  causality (Lemke, 1977). 

We now come to a positive s. Here a c.m.s, exists, relative which 

+-s 1/2 = el + e2 = el + e2 (3.5) 

0 = p l  + p 2 = p p l  + p 2  

where p2 = e 2 + m 2. These equations yield the dependences 

e I = e; = +-½s-1/2(s + m22 - m12), e2=e ;  = +-~S- 1/2(S -- m2 2 +/7'll 2) 
(3.6) 

and the equations Pt = Pl = P2 = P2. Instead of  (3.3) we can write 
t 

t = --2(ml 2 + elel -- PIP;) (3.7) 

which has its maximum for parallel P'I and Pl (where t = 0) and its minimum 
for antiparallet P'I and p~. This minimum is a negative-definite function t(s)  
that follows from substituting (3.6); it is given by 

u = ( m l  2 - m22)2/s ( 3 . 8 )  

like in bradyon-bradyon scattering, since only the signs of  the squared rest 
masses must be changed. (See Figure 3.) At vanishing s this boundary shows 
an unphysical divergence which is just cut off  by  the requirement PiPi < O, 
leading to (3.4). The inequalities 0 > t > (3.4) and (3.7) give the boundaries 

t 

for Pi'x, the projection of  Pi on Pi, 

0 < 1 - Pi'x/I pil < m12/t pi[2 (3.9) 

in the c.m.s., where rn 1 < m 2 has been chosen. 
By (3.6) the phase space o f  the final states is bounded at least outside the 

singularity at vanishing s. Let us inquire into this limit. In the case m 1 = rn2, 
t t 

in which e I = e2 = et = e2 tend towards zero and all three-momenta are of  
magnitude m and satisfy PiPI' > 0, the phase space of  a final momentum is seen 
to consist o f  half the sphere with radius m in three-momentum space 
relating to c.m.s. This agreeable result does not generally follow at s = 0. At 
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Figure 3. Physical regions in tachyon-tachyon scattering, ma < mr. Note the crossing 
symmetry where m 1 --/T/2. 

f ! 
this value Pl = -P2  is also possible without  any limit on the magnitudes o f  the 
components .  Therefore, the physical phase space of  the secondaries at s = 0 
is obtained as the limiting case o f  

s - * 0 + 0  (3.10) 

Let us see what happens at this limit if rn 1 ~ rn 2. For s ~ [ rnl 2 - rn2 2 L (3.6) 
gives e 1 = e '  1 = - e  2 = - e ; ,  wl~ch energies increase in magnitude like s -1/2 in 
the c.m.s. But by  supposition, the components  of  P1 and p2 have normal  
magnitudes for all the Lorentz frames that  do not move in the vicinity of  the 
light cone. So the more the magnitudes increase the more the c.m.s, moves in 
the viciNty o f  the light cone relative to these Lorentz frames; that  is, the c.m.s. 
becomes an unphysical frame for vanishing s where rn 1 ¢ rn> [As (3.9) shows, 
in this frame P~x approaches J Pi I = I P'i t- In other words, the final and initial 
states become identical and the phase space of  the final momenta  vanishes at 
limit (3 .10) in  the c.m.s.] 

However, the standard system of  P2 is physical for every value o f s (provided 
that e 2 is not  very high relative to Lorentz frames that  do not  move in the 
vicinity o f  the light cone). The transit ion to the P2 standard system is Nven by 
the Lorentz boost 

= __ ( e2 ) e s P2 e - - - P x  (3.11) 
m2 \ P2 
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loS= m2 p-2z \[Px P2e2 e) (3. i2)  

1 

(These equations can be checked with Px = P2 and e = e2. ) Since e 2 = e 2 in the 
t c.m.s., the transformation (3.1 1) of  p ;  can be rewritten as e'2 s = p2e2(1 -pzx/p2)/rn2, 

which together with (3.9) (m 2 > ms) shows that l e'2 s I varies within the limits 
, t S 

0 <  [e 2 I <  m l 2 [ e z l / m z P 2  ( 3 . 1 3 )  

and if m I > m2 

0 < le'2Sl < m21e2t/p 2 (3.14) 

Because the right-hand side is finite for vanishing s (and equal to either mt2/m2 
or rn2) the statement before (3.10) has general validity. 

3.3. Let us calculate the kinematic limit of  energy e; relative to the 
standard frame of  P2 directly. Squaring the conservation law p '  1 = Ps +P~ - P 2  

! r 

we find ese 2 = P2(Pl + P2) - P2(Ps + P2). With the angular variable 

1 
z ' =  , P;(Pl +P2) (3.15) 

elP2 
and the given parameter 

1 1 
z = - -  P2(Ps + P2) = - (P2Ps + m2 2) 

elm2 e l m  2 

this relation becomes 

(3.16) 

! t t e2 = p2 z - -  m2z (3.17) 

Squaring once more yields for e; the two solutions 

r /T/2 e~ - [z +z ' (1  +z 2 -z '~)  1/2] (3.18) 
z '2 - -  1 

Let us consider the P2 standard frame with respect to which Pt and pa are 
antiparallel and discuss the behavior of  z. (Such a Lorentz frame exists for 
every positive s, following from boosting along P2 in the c,m.s.) For this 
standard frame s > 0 equates with 

Pl > (ms 2 + m22)/2m2 (3.19) 

Furthermore, (3.16) takes on the form 

Z ( P l )  = - ( m 2  - -  p l ) / ( p l  2 - m12)  t / z  0 . 1 6 ' )  

in this standard frame. This function tends to + t for Pl  tending to infinity, 
it becomes infinite for Ps -+ ml, and it is found to equal 

+-01 for m I 4= m s 
z [(3.19)] = (3.20) 

f o r  m s = m 2 
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at the lower limit (3.19), where s = 0. Because o f  these boundaries 

lzL~< 1 (3.2t) 

in the physical Pl region. Funct ion d z (pa) /dp  1 is found to be zero at 
P1 = mlS/m2,  which value is withing the physical Pl region when rn 2 < m 1. In 
this case I z [ has a local minimum. In case rt/s ) ml, function z has a zero at 
Pl = ms, and strictly monotonous ly  varies between +1 and - 1 .  

According to the limits o f  variable t the restrictions 

0 < P2x < rn2 or (m2 s - mlS)/m: ,. < P'zx < m2 (3.22) 

are valid in the cases ms ~ rnl and rn 2/> rn 1, respectively. The upper bound- 
aries are characterized by  t = 0. As we see from (3.7), which is related to  the 

, t 
c.m.s., Pzx  = P2 only at this value, and as we see from (3.15), (3.16), and (3.16')  

! 

only then does z '  = z. At p ~  = P2 we have e 2 = 0. Hence, the physical solu- 
t ion in (3.18) must equal zero at z '  = z; only the second solution obeys this 
(minus sign). 

The sum Pa + P2 in (3.15) has the components (ms - Pl, 0, 0). When 
m 2 ~ m I component  rn 2 - Pl is negative and therefore the left relation (3.22) 
leads us to 

elz  < elz '  < 0 (3.23) 

Where m a ~> m 1 component  m2 - Pl can be positive and negative. I f  it is 
negative, 

el z < el z, < elz(m22 2 , - rn 1 ) / rn~2  (3.24) 

follows. If  positive, 

elz(rn22 - mlS)lrn2p~ < elz '  < e lz  (3.25) 

which inequalities are writ ten so that they can be used for positive and 
negative e 1. z'  clearly has the same sign as z and is smaller in magnitude than 
I z t, which is less than unity [see (3.21)].  

The physical solution in (3.18) (sign minus) has no singularity at z'  = +1 
for z > 0 and z '  = - t  for z < 0: one finds that e;  = }m2(z- 1 _ z) at z '  -+ 1, 
z > 0 and z '  -+ - 1 ,  z < 0. At the other singularity (z'  = +1 or - 1 )  ' " e 2 jumps 
across -+inf. The variable e; leaves the real region at the limits z '2 = 1 + z 2 and 
has the value e2' = m z / z  there; e; = 0 at z = z '  and e2(z' ' = O) = - m 2 z .  The func- 
tion e;(z ' )  is sketched for a negative z in Figure 4. 

To find the meaning of  the right and left bounds in (3.24)-(3.25),  respect- 
ively, we must compare them with (3.17), which leads to the upper (z < 0) 
or lower (z > 0) limit e;  <> - zm12/m2 ,  where m 2 > ml [cf. (3.13)] .  As expected,  
this limit is smaller than - m 2 z  in Figure 4. I f  rn 2 - P l  < 0 bounds (3.23)-(3.24) 
with el  > 0 are valid (for z < 0) in Figure 4, so z '  is allowed to vary only between 
z and 0. There e; is finite for every physical z (3.21). If m 2 - Pl is positive, 
(3.25) with ea < 0 is valid, which marks the same interval as (3.24). For a 
positive z the results are analogous. 
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Figure 4. The final tachyon energy e~ as a function of z' in the P2 standard system 
relative to which Pl and P2 are antiparallel. The singularity at z' = 1 lies outside the 
kinematic region z ~ z' ~< 0. 

3.4. An Alternative Approach. To see the s dependence of  the e~ limit 
depicted in Figure 4, we must look back to (3.t 6')-(3.21 ). Where m s = m z, 
- z  decreases with s and vanishes at s = 0, only e~ = 0 remains physical. 

Where rn2 < ml, - z  equals 1 at s = inf, passes a positive minimum and 
approaches 1 again as s vanishes. In case m2 > rot, - z  can have the maximum 
1 at s = 0. It passes zero at an intermediate value of s. Then Figure 4 must be 

t t . 
inverted with respect t o  the e 2- and z -axis, parameter - z  further decreases for 
s -+ inf and approaches - 1 .  

Clearly the kinematics would be simpler in the two cases of  unequal masses 
if there were a lower boundary for s. For reasons of symmetry this boundary 
should be located where - z  is minimal in the first case and where z = 0 in the 
second. Indeed, such a lower bound results from the rule designed earfier for 
tachyonic particle decays (Lemke, 1977): Relative to the rest system of the 
initial (final) total momentum the final (initial) particle energies are required 
to be positive. Taking (3.6) into consideration, this leads to 

l t n l  2 - -  rn22t • s 

[For the lower signs in (3.6) the transition between the c,m.s, and this rest 
system S + is preformed by e = -e+.]  At the lower limit the initial energy of  
the one particle equals zero but the energy magnitude of  the other has its 
minimum. Therefore, this limit gives just the restriction required for the 
simpler kinematics above. 

In applying the rule to tachyon-bradyon scattering, two cases have to be 
distinguished: positive s (the rest system is a Lorentz frame) and negative s 
(the rest system is superluminally moving). In the first case (2.8) is valid and 
the rule leads to 

max (m '2 + M  '2, m 2 + M  z) < s 
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(cf. Figure 1 ). In the second case we must know the equations of the trans- 
formation between the superluminal rest system S + and a Lorentz frame, 
e.g., the standard frame of  the total momentum, retative to which expressions 
analogous to (3.2) hold good. For this Lorentz frame the transformation 
equations are given by Px = -+ e+ (Lemke, 1975, 1976; Parker, 1969), which 
shows that the requirement e[  > 0 gives the boundary 

s < - m a x  (m '2 + M  '2, m 2 + M  s) 

These boundaries show that m'  and M'  are bounded by M '2 + m '2 < s. 
For various reasons, this alternative approach should refer only to particle 

decays. It is inoperative in elastic scattering but can apply in inelastic scatter- 
ing. 

3.5. Ine las t i c  Scat ter ing .  Instead of  (3.4) and (2.9) we have 

t > - m i n  (rna 2 + m'l 2, m22 + m~ 2) (3.4') 

t± = - m l  2 - m; 2 - ~s -1 {(s + rnz 2 - m, 2) (s + m;  2 - m; 2) 

-7- [(s + m22 - m , 2 )  2 + 4sm, 211/2 [(s + m22 - m;2) 2 + 4sm?l ,/2} (3.26) 

These functions are defined only outside the s interval 

max [ - ( m  1 - m2) 2, - (m' ,  - m;) 2] > s > min [ - (m ,  + m2) 2, - (m' ,  + m;) 21 

This shows that t -  + can intersect the line s = 0 only if m 1 4:m2 and m'  1 4= m;. 
If  this is satisfied, we find that t+(s -~ 0) -+ inf for (m 2 - ml) (m; - re'a) < 0 
(asymmetric mass change). For (m2 - rot) (m; - re'l) > 0 (symmetrical mass 
change), we find t+(s = 0) to be given by (2.10) with M 2 and M '2 substituted 
by -m~ 2 and -m'l  2. 

The first case leads to an infinite phase space at s = 0, so asymmetric mass 
change is kinematically interdicted. In the second case the less the difference 
between m~ 2 and m~ the greater t+(s = 0), but it is finite because of  the 
assumption m~ @ m'x 2. Because of  (3.4') and because t + approaches zero 
where s tends to infinity, the t region is finite where the mass change is sym- 
metrical. Hence the phase space, too, is finite since s is positive. 

If the initial masses are equal and the final masses are equal, (3.26) Nves 
t+(s = O) = - ( m ;  - ml) 2. This case is depicted in the t channel in Figure 3. 

t 

Now let us examine the case m 1 = m 2, m'  1 =~ m> We find that 

t+(s -+ O) = - m l  z - m ' l  2 - -~(m; 2 - m ~ )  + s - ' / 2 m ,  lm'2 z - m',21 (3.27) 

This tends to +infinity, and hence there is no limited t region at s = 0. How- 
ever, this case differs qualitatively from the two previous cases at s = 0. In the 
first, the initial total momentum is and becomes isotropic, in the second the 
initial total momentum is and becomes a null vector.1 Total isotropic and 
null vectors are two qualitatively different things. For example, this can be 

1 In this paper, a null-vector has every component equal to zero. 
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seen from (3.6), which shows that in the one case the energies become zero 
at s = 0, while in the other they become infinite. To exclude (3.27), the selec- 
tion rule must hold: If  the total in-coming momentum is a null-vector, then 
the total out-going momentum is also a null-vector, and vice versa. This rule is 
covariant because the concept of  a null-vector in momentum space :is covariant. 

Without using additional assumptions we thus had to introduce two selection 
rules into the kinematics of  inelastic tachyon-tachyon scattering, the one to 
exclude asymmetric mass change and the other to exclude m 1 = m2, m'i 4= rn; 

¢ 

or m I 4= m 2, m I = m;, (3.27), and this because of singularities at s = 0. We 
would not have to do this if the alternative approach in Subsection 3.4 applied, 
since both  these cases are characterized by states with unequal masses so that 
} = 0 would lie outside the physical region. 2 Besides, in this approach constraint 
(3.4') is not necessary for limiting the phase space in inelastic tachyon-tachyon 
scattering. 

According to the rule in Subsection 3.4 the rest masses of  the final particles 
are bounded by I m'l 2 -- m;21 < s, a restriction that is clearly insufficient for 
excluding infinite rest masses. But let us assume that each of  the m i s is allowed 
to take on some value independently of  the given value of  the other m} (some 
kind of  statistical independence). This assumed ability o f  each of  the m}'s will 
conflict with the restriction unless m} < s. (Another explanation o f  this bound 
was given in Lemke, 1977). 
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2 For example, the inelastic reaction Zrta + ~rta ~ 7rta + r~ta cannot consistently be 
described within the pure kinematics. (Reactions between leptons do not yield such an 
example because of Lg and L e conservation.) However, if the condition in Subsection 
3.4 is satisfied, this reaction can happen. Moreover, this condition suggests regarding 
the c.m.s, as source rest system (Lemke, 1975, 1977) of the produced ~ meson. 


